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Lecture 18:
Nonregular Languages



  

Recap from Last Time



  

Theorem: The following are all equivalent:
 

  · L is a regular language.
  · There is a DFA D such that (ℒ D) = L.
  · There is an NFA N such that (ℒ N) = L.
  · There is a regular expression R such that (ℒ R) = L.



  

New Stuff!



  

A Warm-Up Exercise



  

qₖ

Consider a DFA for (ℒ a* ∪ b*)…

Suppose we
land here upon
reading aaaa.

Not knowing what the rest of the 
DFA looks like, which of the 

following can we say are true?

(1) aa must also land in qₖ.

(2) aa might also land in qₖ.

(3) aa cannot land land in qₖ.

(4) bb must also land in qₖ.

(5) bb might also land in qₖ.

(6) bb cannot land in qₖ.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Nonregular Languages



  

A Powerful Intuition
● Regular languages correspond to problems 

that can be solved with finite memory.
● At each point in time, we only need to store one 

of finitely many pieces of information.
● Nonregular languages, in a sense, correspond to 

problems that cannot be solved with finite memory.
● Since every computer ever built has finite memory, 

in a sense, nonregular languages correspond to 
problems that cannot be solved by physical 
computers!
● Though there’s a bit of an asterisk here we need 

to address. Hold tight!



  

Finding Nonregular Languages



  

Finding Nonregular Languages
● To prove that a language is regular, we can just find a 

DFA, NFA, or regex for it.
● To prove that a language is not regular, we need to 

prove that there are no possible DFAs, NFAs, or 
regexes for it.
● Claim: We can actually just prove that there's no DFA for it. 

Why is this?
● This sort of argument will be challenging. Our 

arguments will be somewhat technical in nature, since 
we need to rigorously establish that no amount of 
creativity could produce a DFA for a given language.

● Let's see an example of how to do this.



  

A Simple Language
● Let Σ = {a, b} and consider the following 

language:
E = {anbn | n ∈ ℕ }     

● E is the language of all strings of n a's 
followed by n b's:

{ ε, ab, aabb, aaabbb, aaaabbbb, … }



  

A Simple Language

E = {anbn | n ∈ ℕ }      

None of these regular expressions are 
regexes for the language E. Explain why not.

a*b*
(ab)*

ε  ab  a∪ ∪ 2b2  a∪ 3b3

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

We seem to be running into some trouble.
Why is that?



  

Let's imagine what a DFA for the language
{ anbn | n ∈ ℕ} would have to look like.

Can we say anything about it?



  

q₀ qₖ qₙ

start  

Keeping Things Separated

   aa (?)

aaaa aaaabbbb

aabbbb



  

q₀ qₖ qₙ

start  

Keeping Things Separated

   aa (?)

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!
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q₀ qₖ qₙ

start  

Keeping Things Separated

   aa (?)

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!



  

What’s Going On?
● Lemma: If D is a DFA for E = {anbn | n ∈ ℕ} and 

we run D on both a2 and a4, then those strings do 
not end in the same state.

● Proof Idea:
● Suppose you do end up in the same state. Then a4b4 

and a2b4 end up in the same state (DFAs are 
deterministic, so we follow the same transitions). 
But then we either reject a4b4 (oops) or accept a2b4 
(oops).

● Powerful intuition: Any DFA for E must keep a2 
and a4 separated. It needs to remember something 
fundamentally different after reading those 
strings.



  

What’s Going On?
Lemma: If D is a DFA for E = {anbn | n ∈ ℕ} and 
we run D on both a2 and a4, then those strings do 
not end in the same state.
Proof Idea:

Suppose you do end up in the same state. Then a4b4 
and a2b4 end up in the same state (DFAs are 
deterministic, so we follow the same transitions). 
But then we either reject a4b4 (oops) or accept a2b4 
(oops).

Powerful intuition: Any DFA for E must keep a2 
and a4 separated. It needs to remember something 
fundamentally different after reading those 
strings.



  

A More General Result
● Lemma: If D is a DFA for E = {anbn | n ∈ ℕ} and 

we run D on any strings am ≠ an, then those strings 
do not end in the same state.

● Proof Idea:
● Suppose you do end up in the same state. Then ambm 

and anbm end up in the same state (DFAs are 
deterministic, so we follow the same transitions). 
But then we either reject ambm (oops) or accept ambn 
(oops).

● Powerful intuition: Any DFA for E must keep am 
and an separated. It needs to remember something 
fundamentally different after reading those 
strings.



  

start   

a0

a1

a2

a3

a4

a5

a6

a7

?

Suppose we have a DFA for E…



  

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

 and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must 
have been wrong. Therefore, E is not regular. ■
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We're going to see a simpler proof of this result later on once we've built more 
machinery. If (hypothetically speaking) you want to prove something like this in 

the future, we'd recommend not using this proof as a template.



  

What Just Happened?
● We've just hit the limit of finite-memory 

computation.
● A DFA for E = { anbn | n ∈ ℕ } needs to keep 

infinitely many strings separated.
● There's no way to do this with finitely many 

possible states!
● And so…

… you can’t build a DFA for E,
… or design an NFA for E,
… or write a regex for E.

● Wow!



  

Time-Out for Announcements!



  

Second Midterm Logistics
● Our second midterm exam is next Monday, November 10 

from 7:00PM – 10:00PM
    Seating assignments have changed.    

    ☞ Check the seating assignment page again.    ☜
Write down your new seat.

● Topic coverage is primarily lectures 06 – 13 (functions 
through induction) and PS3 – PS5. Finite automata and 
onward won’t be tested here.
● Because the material is cumulative, topics from PS1 – PS2 and 

Lectures 00 – 05 are also fair game.
● The exam is closed-book and closed-computer. You can bring 

one double-sided 8.5” × 11” sheet of notes with you.
● Contact us ASAP if you need an alternate exam and haven’t 

heard from us with date/time/place.



  

Review Session
● Kenneth is holding a review session tomorrow 

(Thursday). Location / time are up on Ed.
● As with last time, this is not recorded.
● As with last time, come prepared with questions 

you want to ask.
● We also have a ton of practice exams up on the 

course website.
● Best of luck – you can do this!



  

Back to CS103!



  

Generalizing the Proof



  

What We Did
● Our proof that E = {anbn | n ∈ ℕ} is not 

regular relied on several observations:
● No two strings am ≠ an can end in the same 

state in any DFA for E. Appending bm puts 
one string into E and keeps the other out.

● DFAs only have finitely many states, so there 
simply isn’t room to keep all these strings 
separated.

● So there can’t be a DFA for E.
● Question: Can we generalize this idea?



  

What We Did

Our proof that E = {anbn | n ∈ ℕ} is not 
regular relied on several observations:
● No two strings am ≠ an can end in the same 

state in any DFA for E. Appending bm puts 
one string into E and keeps the other out.
DFAs only have finitely many states, so there 
simply isn’t room to keep all these strings 
separated.
So there can’t be a DFA for E.

Question: Can we generalize this idea?



  

Distinguishability
● Let L be an arbitrary language over Σ.
● Strings x ∈ Σ* and y ∈ Σ* are distinguishable 

relative to L when there is a string w ∈ Σ* 
such that exactly one of xw and yw is in L.

● We denote this by writing x ≢L y.
● Formally, we say that x ≢L y when

∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)   

This is how we
express exclusive “OR”
in propositional logic.



  

Distinguishability
● Consider the language

E = { anbn | n ∈ ℕ }.
● There’s a collection of 

strings to the right.
● Which pairs of these strings 

are distinguishable relative 
to E? What would you 
append to distinguish 
them?

● (Two strings x and y are 
distinguishable relative to E 
when there’s a string w 
where exactly one of xw 
and yw belongs to E.)

aab

abb

aaa

aba

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev
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them?
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when there’s a string w 
where exactly one of xw 
and yw belongs to E.)

aab

abb

aaa

aba

bbb

b b

bbb

b   



  

Distinguishability
● A palindrome is a string that is the same when the 

characters are read left-to-right and right-to-left.
● Consider the language

L = { w ∈ {a, b}* | w is a palindrome }
● Which pairs of the strings below are distinguishable relative 

to L? What would you append to distinguish them?

aab

abb

aaa

aba

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Distinguishability
● A palindrome is a string that is the same when the 

characters are read left-to-right and right-to-left.
● Consider the language

L = { w ∈ {a, b}* | w is a palindrome }
● Which pairs of the strings below are distinguishable relative 

to L? What would you append to distinguish them?

aab

abb

aaa

aba

ε

a ε

a

ε    
         ε



  

Distinguishing Sets
● Let L ⊆ Σ* be a language. A distinguishing set for L 

is set S ⊆ Σ* where the following is true:
∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢L y).

● In other words, it’s a set of strings S where all pairs of 
distinct strings in S are distinguishable relative to L.

aab

abb

aaa

aba

bbb

b b

bbb

b   

aab

abb

aaa

aba

ε

a ε

a 

ε    
      ε

× ✓



  

Distinguishing Sets
● Let E = { anbn | n ∈ ℕ }.
● Which of the following are distinguishing 

sets for E?

{ ε, a, ab }
a*

{ anbn | n ∈ ℕ }

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Distinguishing Sets
● Let L = { w ∈ {a, b}* | w is a 

palindrome }.
● Which of the following are distinguishing 

sets for L?
{ ε, a, ab }

a*
{ anbn | n ∈ ℕ }

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Distinguishability
● Theorem: Let L be an arbitrary language over Σ. Let 

x ∈ Σ* and y ∈ Σ* be strings where x ≢L y. If D is a DFA 
where (ℒ D) = L, then D must end in different states when 
run on inputs x and y.

● Proof sketch:

q₀ qₖ qₙ

start  

y

x xw

yw



  

(A distinguishing set
containing infinitely
many strings.)

Theorem (Myhill-Nerode):

Let L be a language. If L has an infinite
distinguishing set, then L is not regular.



  

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the 
number of states in D. Since there are infinitely many strings in 
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings. 
There are only k states in D and we have k+1 strings, so by the 
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in 
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know 
that wᵢ ≢  wⱼ. As we saw earlier, when we run wᵢ and wⱼ through 
D, they therefore end up in different states. But this is 
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have 
been wrong. Thus L is not a regular language. ■
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Using the Myhill-Nerode Theorem



  

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one 
string for each natural number.
To see that S is a distinguishing set for E, consider 
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that 
am ≢  an, as required.
Since S is infinite and is a distinguishing set for E, 
by the Myhill-Nerode theorem we see that E is not 
regular. ■
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am ≢  an, as required.
Since S is infinite and is a distinguishing set for E, 
by the Myhill-Nerode theorem we see that E is not 
regular. ■



  

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one 
string for each natural number.
To see that S is a distinguishing set for E, consider 
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that 
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see that am ≢  an, as required.
Since S is infinite and is a distinguishing set for L, 
by the Myhill-Nerode theorem we see that L is not 
regular. ■



  

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one 
string for each natural number.
To see that S is a distinguishing set for L, consider 
any two strings ambm, anbn ∈ S where m ≠ n. Note 
that ambmam ∈ L and that anbnam ∉ L. Therefore, we 
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see that am ≢  an, as required.
Since S is infinite and is a distinguishing set for L, 
by the Myhill-Nerode theorem we see that L is not 
regular. ■



  

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one 
string for each natural number.
To see that S is a distinguishing set for L, consider 
any two strings ambm, anbn ∈ S where m ≠ n. Note 
that ambmam ∈ L and that anbnam ∉ L. Therefore, we 
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we see that ambm ≢  anbn, as required.
Since S is infinite and is a distinguishing set for L, 
by the Myhill-Nerode theorem we see that L is not 
regular. ■

L



  

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one 
string for each natural number.
To see that S is a distinguishing set for L, consider 
any two strings ambm, anbn ∈ S where m ≠ n. Note 
that ambmbmam ∈ L and that anbnbmam ∉ L. Therefore, 
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we see that ambm ≢  anbn, as required.
Since S is infinite and is a distinguishing set for L, 
by the Myhill-Nerode theorem we see that L is not 
regular. ■

L



  

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one 
string for each natural number.
To see that S is a distinguishing set for L, consider 
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we 
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see that am ≢  an, as required.
Since S is infinite and is a distinguishing set for L, 
by the Myhill-Nerode theorem we see that L is not 
regular. ■



  

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one 
string for each natural number.
To see that S is a distinguishing set for L, consider 
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we 
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Approaching Myhill-Nerode
● The challenge in using the Myhill-Nerode 

theorem is finding the right set of strings.
● General intuition:

● Start by thinking about what information a computer 
“must” remember in order to answer correctly.

● Choose a group of strings that all require different 
information.

● Prove that you have infinitely many strings an that 
the group of strings is a distinguishing set.

● Check our online “Guide to the Myhill-
Nerode Theorem” for more details.



  

Tying Everything Together
● Key Intuition for DFAs: Have each state in a 

DFA represent some key piece of information 
the automaton has to remember.
● If you only need to remember one of finitely many 

pieces of information, that gives you a DFA: the 
states correspond to those pieces of information.

● If you must remember one of infinitely many pieces 
of information, your language is not regular: use the 
information that “must be remembered” to build a 
distinguishing set for the Myhill-Nerode theorem.

● This can be made rigorous! Take CS154 for 
details.



  

Where We Stand



  

Where We Stand
● We've ended up where we are now by trying to answer the 

question “what problems can you solve with a computer?”
● We defined a computer to be DFA, which means that the 

problems we can solve are precisely the regular languages.
● We've discovered several equivalent ways to think about 

regular languages (DFAs, NFAs, and regular expressions) 
and used that to reason about the regular languages.

● We now have a powerful intuition for where we ended up: 
DFAs are finite-memory computers, and regular languages 
correspond to problems solvable with finite memory.

● Putting all of this together, we have a much deeper sense 
for what finite memory computation looks like – and what it 
doesn't look like!



  

Where We're Going
● What does computation look like with 

unbounded memory?
● What problems can you solve with 

unbounded-memory computers?
● What does it even mean to “solve” such a 

problem?
● And how do we know the answers to any 

of these questions?



  

Your Action Items
● Read “Guide to the Myhill-Nerode 

Theorem.”
● It’s a useful refresher and deep-dive into all the 

topics we covered today.
● And it has worked exercises to give you a sense 

of how the theorem works!
● Finish Problem Set 6.

● Slow and steady progress is key here.
● Come talk to us if you have questions!



  

Next Time
● Context-Free Languages

● Context-Free Grammars
● Generating Languages from Scratch
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