

CS103CS103
Fall 2025Fall 2025

Lecture 18:
Nonregular Languages

Recap from Last Time

Theorem: The following are all equivalent:

 · L is a regular language.
 · There is a DFA D such that (ℒ D) = L.
 · There is an NFA N such that (ℒ N) = L.
 · There is a regular expression R such that (ℒ R) = L.

New Stuff!

A Warm-Up Exercise

qₖ

Consider a DFA for (ℒ a* ∪ b*)…

Suppose we
land here upon
reading aaaa.

Not knowing what the rest of the
DFA looks like, which of the

following can we say are true?

(1) aa must also land in qₖ.

(2) aa might also land in qₖ.

(3) aa cannot land land in qₖ.

(4) bb must also land in qₖ.

(5) bb might also land in qₖ.

(6) bb cannot land in qₖ.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Nonregular Languages

A Powerful Intuition
● Regular languages correspond to problems

that can be solved with finite memory.
● At each point in time, we only need to store one

of finitely many pieces of information.
● Nonregular languages, in a sense, correspond to

problems that cannot be solved with finite memory.
● Since every computer ever built has finite memory,

in a sense, nonregular languages correspond to
problems that cannot be solved by physical
computers!
● Though there’s a bit of an asterisk here we need

to address. Hold tight!

Finding Nonregular Languages

Finding Nonregular Languages
● To prove that a language is regular, we can just find a

DFA, NFA, or regex for it.
● To prove that a language is not regular, we need to

prove that there are no possible DFAs, NFAs, or
regexes for it.
● Claim: We can actually just prove that there's no DFA for it.

Why is this?
● This sort of argument will be challenging. Our

arguments will be somewhat technical in nature, since
we need to rigorously establish that no amount of
creativity could produce a DFA for a given language.

● Let's see an example of how to do this.

A Simple Language
● Let Σ = {a, b} and consider the following

language:
E = {anbn | n ∈ ℕ }

● E is the language of all strings of n a's
followed by n b's:

{ ε, ab, aabb, aaabbb, aaaabbbb, … }

A Simple Language

E = {anbn | n ∈ ℕ }

None of these regular expressions are
regexes for the language E. Explain why not.

a*b*
(ab)*

ε ab a∪ ∪ 2b2 a∪ 3b3

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

We seem to be running into some trouble.
Why is that?

Let's imagine what a DFA for the language
{ anbn | n ∈ ℕ} would have to look like.

Can we say anything about it?

q₀ qₖ qₙ

start

Keeping Things Separated

 aa (?)

aaaa aaaabbbb

aabbbb

q₀ qₖ qₙ

start

Keeping Things Separated

 aa (?)

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!

q₀ qₖ qₙ

start

Keeping Things Separated

 aa (?)

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!

q₀ qₖ qₙ

start

Keeping Things Separated

 aa (?)

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!

q₀ qₖ qₙ

start

Keeping Things Separated

 aa (?)

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!

What’s Going On?
● Lemma: If D is a DFA for E = {anbn | n ∈ ℕ} and

we run D on both a2 and a4, then those strings do
not end in the same state.

● Proof Idea:
● Suppose you do end up in the same state. Then a4b4

and a2b4 end up in the same state (DFAs are
deterministic, so we follow the same transitions).
But then we either reject a4b4 (oops) or accept a2b4
(oops).

● Powerful intuition: Any DFA for E must keep a2
and a4 separated. It needs to remember something
fundamentally different after reading those
strings.

What’s Going On?
Lemma: If D is a DFA for E = {anbn | n ∈ ℕ} and
we run D on both a2 and a4, then those strings do
not end in the same state.
Proof Idea:

Suppose you do end up in the same state. Then a4b4
and a2b4 end up in the same state (DFAs are
deterministic, so we follow the same transitions).
But then we either reject a4b4 (oops) or accept a2b4
(oops).

Powerful intuition: Any DFA for E must keep a2
and a4 separated. It needs to remember something
fundamentally different after reading those
strings.

A More General Result
● Lemma: If D is a DFA for E = {anbn | n ∈ ℕ} and

we run D on any strings am ≠ an, then those strings
do not end in the same state.

● Proof Idea:
● Suppose you do end up in the same state. Then ambm

and anbm end up in the same state (DFAs are
deterministic, so we follow the same transitions).
But then we either reject ambm (oops) or accept ambn
(oops).

● Powerful intuition: Any DFA for E must keep am
and an separated. It needs to remember something
fundamentally different after reading those
strings.

start

a0

a1

a2

a3

a4

a5

a6

a7

?

Suppose we have a DFA for E…

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

 and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

 and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

 and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

 and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

 and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

 and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

 and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.
Proof: Suppose for the sake of contradiction that E is regular.

Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D. But this is impossible, since we know that am

and an cannot end in the same state when run through D.
We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular. ■

We're going to see a simpler proof of this result later on once we've built more
machinery. If (hypothetically speaking) you want to prove something like this in

the future, we'd recommend not using this proof as a template.

What Just Happened?
● We've just hit the limit of finite-memory

computation.
● A DFA for E = { anbn | n ∈ ℕ } needs to keep

infinitely many strings separated.
● There's no way to do this with finitely many

possible states!
● And so…

… you can’t build a DFA for E,
… or design an NFA for E,
… or write a regex for E.

● Wow!

Time-Out for Announcements!

Second Midterm Logistics
● Our second midterm exam is next Monday, November 10

from 7:00PM – 10:00PM
 Seating assignments have changed.

 ☞ Check the seating assignment page again. ☜
Write down your new seat.

● Topic coverage is primarily lectures 06 – 13 (functions
through induction) and PS3 – PS5. Finite automata and
onward won’t be tested here.
● Because the material is cumulative, topics from PS1 – PS2 and

Lectures 00 – 05 are also fair game.
● The exam is closed-book and closed-computer. You can bring

one double-sided 8.5” × 11” sheet of notes with you.
● Contact us ASAP if you need an alternate exam and haven’t

heard from us with date/time/place.

Review Session
● Kenneth is holding a review session tomorrow

(Thursday). Location / time are up on Ed.
● As with last time, this is not recorded.
● As with last time, come prepared with questions

you want to ask.
● We also have a ton of practice exams up on the

course website.
● Best of luck – you can do this!

Back to CS103!

Generalizing the Proof

What We Did
● Our proof that E = {anbn | n ∈ ℕ} is not

regular relied on several observations:
● No two strings am ≠ an can end in the same

state in any DFA for E. Appending bm puts
one string into E and keeps the other out.

● DFAs only have finitely many states, so there
simply isn’t room to keep all these strings
separated.

● So there can’t be a DFA for E.
● Question: Can we generalize this idea?

What We Did

Our proof that E = {anbn | n ∈ ℕ} is not
regular relied on several observations:
● No two strings am ≠ an can end in the same

state in any DFA for E. Appending bm puts
one string into E and keeps the other out.
DFAs only have finitely many states, so there
simply isn’t room to keep all these strings
separated.
So there can’t be a DFA for E.

Question: Can we generalize this idea?

Distinguishability
● Let L be an arbitrary language over Σ.
● Strings x ∈ Σ* and y ∈ Σ* are distinguishable

relative to L when there is a string w ∈ Σ*
such that exactly one of xw and yw is in L.

● We denote this by writing x ≢L y.
● Formally, we say that x ≢L y when

∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

This is how we
express exclusive “OR”
in propositional logic.

Distinguishability
● Consider the language

E = { anbn | n ∈ ℕ }.
● There’s a collection of

strings to the right.
● Which pairs of these strings

are distinguishable relative
to E? What would you
append to distinguish
them?

● (Two strings x and y are
distinguishable relative to E
when there’s a string w
where exactly one of xw
and yw belongs to E.)

aab

abb

aaa

aba

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Distinguishability
● Consider the language

E = { anbn | n ∈ ℕ }.
● There’s a collection of

strings to the right.
● Which pairs of these strings

are distinguishable relative
to E? What would you
append to distinguish
them?

● (Two strings x and y are
distinguishable relative to E
when there’s a string w
where exactly one of xw
and yw belongs to E.)

aab

abb

aaa

aba

bbb

b b

bbb

b

Distinguishability
● A palindrome is a string that is the same when the

characters are read left-to-right and right-to-left.
● Consider the language

L = { w ∈ {a, b}* | w is a palindrome }
● Which pairs of the strings below are distinguishable relative

to L? What would you append to distinguish them?

aab

abb

aaa

aba

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Distinguishability
● A palindrome is a string that is the same when the

characters are read left-to-right and right-to-left.
● Consider the language

L = { w ∈ {a, b}* | w is a palindrome }
● Which pairs of the strings below are distinguishable relative

to L? What would you append to distinguish them?

aab

abb

aaa

aba

ε

a ε

a

ε
 ε

Distinguishing Sets
● Let L ⊆ Σ* be a language. A distinguishing set for L

is set S ⊆ Σ* where the following is true:
∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢L y).

● In other words, it’s a set of strings S where all pairs of
distinct strings in S are distinguishable relative to L.

aab

abb

aaa

aba

bbb

b b

bbb

b

aab

abb

aaa

aba

ε

a ε

a

ε
 ε

× ✓

Distinguishing Sets
● Let E = { anbn | n ∈ ℕ }.
● Which of the following are distinguishing

sets for E?

{ ε, a, ab }
a*

{ anbn | n ∈ ℕ }

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Distinguishing Sets
● Let L = { w ∈ {a, b}* | w is a

palindrome }.
● Which of the following are distinguishing

sets for L?
{ ε, a, ab }

a*
{ anbn | n ∈ ℕ }

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Distinguishability
● Theorem: Let L be an arbitrary language over Σ. Let

x ∈ Σ* and y ∈ Σ* be strings where x ≢L y. If D is a DFA
where (ℒ D) = L, then D must end in different states when
run on inputs x and y.

● Proof sketch:

q₀ qₖ qₙ

start

y

x xw

yw

(A distinguishing set
containing infinitely
many strings.)

Theorem (Myhill-Nerode):

Let L be a language. If L has an infinite
distinguishing set, then L is not regular.

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

L

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

L

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

L

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

L

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

L

Theorem: Let L be a language. If L has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.
We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w₁, w₂, …, and wk+1 from S.
Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wᵢ ≠ wⱼ in S that end in
the same state when run through D.
Because wᵢ ≠ wⱼ and S is a distinguishing set for L, we know
that wᵢ ≢ wⱼ. As we saw earlier, when we run wᵢ and wⱼ through
D, they therefore end up in different states. But this is
impossible: wᵢ and wⱼ end in the same state when run through D.
We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

L

Using the Myhill-Nerode Theorem

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for E, consider
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that
am ≢ an, as required.
Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for E, consider
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that
am ≢ an, as required.
Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for E, consider
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that
am ≢ an, as required.
Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for E, consider
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that
am ≢ an, as required.
Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for E, consider
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that
am ≢ an, as required.
Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for E, consider
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that
am ≢ an, as required.
Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for E, consider
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that
am ≢ an, as required.
Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for E, consider
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that
am ≢ an, as required.
Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

E

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for E, consider
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that
am ≢ an, as required.
Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

E

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S is
infinite and that S is a distinguishing set for E.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for E, consider
any two strings am, an ∈ S where m ≠ n. Note that
ambm ∈ E and that anbm ∉ E. Therefore, we see that
am ≢ an, as required.
Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. ■

E

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings ambm, anbn ∈ S where m ≠ n. Note
that ambmam ∈ L and that anbnam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings ambm, anbn ∈ S where m ≠ n. Note
that ambmam ∈ L and that anbnam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings ambm, anbn ∈ S where m ≠ n. Note
that ambmam ∈ L and that anbnam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings ambm, anbn ∈ S where m ≠ n. Note
that ambmam ∈ L and that anbnam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings ambm, anbn ∈ S where m ≠ n. Note
that ambmam ∈ L and that anbnam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings ambm, anbn ∈ S where m ≠ n. Note
that ambmam ∈ L and that anbnam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings ambm, anbn ∈ S where m ≠ n. Note
that ambmbmam ∈ L and that anbnbmam ∉ L. Therefore,
we see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings ambm, anbn ∈ S where m ≠ n. Note
that ambmbmam ∈ L and that anbnbmam ∉ L. Therefore,
we see that ambm ≢ anbn, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

L

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings ambm, anbn ∈ S where m ≠ n. Note
that ambmbmam ∈ L and that anbnbmam ∉ L. Therefore,
we see that ambm ≢ anbn, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

L

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { anbn | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings ambm, anbn ∈ S where m ≠ n. Note
that ambmbmam ∈ L and that anbnbmam ∉ L. Therefore,
we see that ambm ≢ anbn, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

L

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

L

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

L

Theorem: The language L = { w ∈ {a, b}* | w is a
palindrome } is not regular.

Proof: Let S = { an | n ∈ ℕ }. We will prove that S
is infinite and that S is a distinguishing set for L.
To see that S is infinite, note that S contains one
string for each natural number.
To see that S is a distinguishing set for L, consider
any two strings am, an ∈ S where m ≠ n. Note
that ambam ∈ L and that anbam ∉ L. Therefore, we
see that am ≢ an, as required.
Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. ■

L

Approaching Myhill-Nerode
● The challenge in using the Myhill-Nerode

theorem is finding the right set of strings.
● General intuition:

● Start by thinking about what information a computer
“must” remember in order to answer correctly.

● Choose a group of strings that all require different
information.

● Prove that you have infinitely many strings an that
the group of strings is a distinguishing set.

● Check our online “Guide to the Myhill-
Nerode Theorem” for more details.

Tying Everything Together
● Key Intuition for DFAs: Have each state in a

DFA represent some key piece of information
the automaton has to remember.
● If you only need to remember one of finitely many

pieces of information, that gives you a DFA: the
states correspond to those pieces of information.

● If you must remember one of infinitely many pieces
of information, your language is not regular: use the
information that “must be remembered” to build a
distinguishing set for the Myhill-Nerode theorem.

● This can be made rigorous! Take CS154 for
details.

Where We Stand

Where We Stand
● We've ended up where we are now by trying to answer the

question “what problems can you solve with a computer?”
● We defined a computer to be DFA, which means that the

problems we can solve are precisely the regular languages.
● We've discovered several equivalent ways to think about

regular languages (DFAs, NFAs, and regular expressions)
and used that to reason about the regular languages.

● We now have a powerful intuition for where we ended up:
DFAs are finite-memory computers, and regular languages
correspond to problems solvable with finite memory.

● Putting all of this together, we have a much deeper sense
for what finite memory computation looks like – and what it
doesn't look like!

Where We're Going
● What does computation look like with

unbounded memory?
● What problems can you solve with

unbounded-memory computers?
● What does it even mean to “solve” such a

problem?
● And how do we know the answers to any

of these questions?

Your Action Items
● Read “Guide to the Myhill-Nerode

Theorem.”
● It’s a useful refresher and deep-dive into all the

topics we covered today.
● And it has worked exercises to give you a sense

of how the theorem works!
● Finish Problem Set 6.

● Slow and steady progress is key here.
● Come talk to us if you have questions!

Next Time
● Context-Free Languages

● Context-Free Grammars
● Generating Languages from Scratch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104

